Electrical switching of a p-wave magnet

  • Baltz, V. et al. Antiferromagnetic spintronics. Rev. Mod. Phys. 90, 015005 (2018).

    Article 
    ADS 
    MathSciNet 
    CAS 

    Google Scholar 

  • Olejník, K. et al. Terahertz electrical writing speed in an antiferromagnetic memory. Sci. Adv. 4, eaar3566 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Šmejkal, L., Sinova, J. & Jungwirth, T. Emerging research landscape of altermagnetism. Phys. Rev. X 12, 040501 (2022).

    Google Scholar 

  • Šmejkal, L., Sinova, J. & Jungwirth, T. Beyond conventional ferromagnetism and antiferromagnetism: a phase with nonrelativistic spin and crystal rotation symmetry. Phys. Rev. X 12, 031042 (2022).

    Google Scholar 

  • Hellenes, A. B., Jungwirth, T., Sinova, J. & Šmejkal, L. P-wave magnets. Preprint at https://arxiv.org/abs/2309.01607 (2024).

  • Krempaský, J. et al. Altermagnetic lifting of Kramers spin degeneracy. Nature 626, 517–522 (2024).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Amin, O. J. et al. Nanoscale imaging and control of altermagnetism in MnTe. Nature 636, 348–353 (2024).

  • Wadley, P. et al. Electrical switching of an antiferromagnet. Science 351, 587–590 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Yan, H. et al. Electric-field-controlled antiferromagnetic spintronic devices. Adv. Mater. 32, 1905603 (2020).

    Article 
    CAS 

    Google Scholar 

  • Tokura, Y., Seki, S. & Nagaosa, N. Multiferroics of spin origin. Rep. Prog. Phys. 77, 076501 (2014).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Fiebig, M., Lottermoser, T., Meier, D. & Trassin, M. The evolution of multiferroics. Nat. Rev. Mater. 1, 16046 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Cheong, S.-W. & Mostovoy, M. Multiferroics: a magnetic twist for ferroelectricity. Nat. Mater. 6, 13–20 (2007).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Kurumaji, T. Spiral spin structures and skyrmions in multiferroics. Phys. Sci. Rev. 5, 20190016 (2020).

  • Masuda, R., Kaneko, Y., Tokura, Y. & Takahashi, Y. Electric field control of natural optical activity in a multiferroic helimagnet. Science 372, 496–500 (2021).

  • Chen, X. et al. Unconventional magnons in collinear magnets dictated by spin space groups. Nature 640, 349–354 (2025).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hayami, S., Yanagi, Y. & Kusunose, H. Momentum-dependent spin splitting by collinear antiferromagnetic ordering. J. Phys. Soc. Jpn. 88, 123702 (2019).

    Article 
    ADS 

    Google Scholar 

  • Yuan, L.-D., Wang, Z., Luo, J.-W., Rashba, E. I. & Zunger, A. Giant momentum-dependent spin splitting in centrosymmetric low-Z antiferromagnets. Phys. Rev. B 102, 014422 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Yuan, L.-D., Wang, Z., Luo, J.-W. & Zunger, A. Prediction of low-Z collinear and noncollinear antiferromagnetic compounds having momentum-dependent spin splitting even without spin-orbit coupling. Phys. Rev. Mater. 5, 014409 (2021).

    Article 
    CAS 

    Google Scholar 

  • Chen, X. et al. Octupole-driven magnetoresistance in an antiferromagnetic tunnel junction. Nature 613, 490–495 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Qin, P. et al. Room-temperature magnetoresistance in an all-antiferromagnetic tunnel junction. Nature 613, 485–489 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Zhu, Y.-P. et al. Observation of plaid-like spin splitting in a noncoplanar antiferromagnet. Nature 626, 523–528 (2024).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Cheong, S.-W. & Huang, F.-T. Altermagnetism with non-collinear spins. npj Quantum Mater. 9, 13 (2024).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Brekke, B., Sukhachov, P., Giil, H. G., Brataas, A. & Linder, J. Minimal models and transport properties of unconventional p-wave magnets. Phys. Rev. Lett. 133, 236703 (2024).

    Article 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar 

  • Yamada, R. et al. Gapping the spin-nodal planes of an anisotropic p-wave magnet to induce a large anomalous Hall effect. Preprint at https://arxiv.org/abs/2502.10386 (2025).

  • Maeda, K., Lu, B., Yada, K. & Tanaka, Y. Theory of tunneling spectroscopy in unconventional p-wave magnet-superconductor hybrid structures. J. Phys. Soc. Jpn. 93, 114703 (2024).

  • Katsura, H., Nagaosa, N. & Balatsky, A. V. Spin current and magnetoelectric effect in noncollinear magnets. Phys. Rev. Lett. 95, 057205 (2005).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Sergienko, I. A. & Dagotto, E. Role of the Dzyaloshinskii-Moriya interaction in multiferroic perovskites. Phys. Rev. B 73, 094434 (2006).

    Article 
    ADS 

    Google Scholar 

  • Babkevich, P. et al. Electric field control of chiral magnetic domains in the high-temperature multiferroic CuO. Phys. Rev. B 85, 134428 (2012).

    Article 
    ADS 

    Google Scholar 

  • Stein, J. et al. Control of chiral magnetism through electric fields in multiferroic compounds above the long-range multiferroic transition. Phys. Rev. Lett. 119, 177201 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Sagayama, H. et al. Observation of spin helicity using nonresonant circularly polarized X-ray diffraction analysis. J. Phys. Soc. Jpn. 79, 043711 (2010).

    Article 
    ADS 

    Google Scholar 

  • Yamasaki, Y. et al. Electric control of spin helicity in a magnetic ferroelectric. Phys. Rev. Lett. 98, 147204 (2007).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Kurumaji, T. et al. Magnetoelectric responses induced by domain rearrangement and spin structural change in triangular-lattice helimagnets NiI2 and CoI2. Phys. Rev. B 87, 014429 (2013).

    Article 
    ADS 

    Google Scholar 

  • Song, Q. et al. Evidence for a single-layer van der Waals multiferroic. Nature 602, 601–605 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Amini, M. et al. Atomic-scale visualization of multiferroicity in monolayer NiI2. Adv. Mater. 36, 2311342 (2024).

    Article 
    CAS 

    Google Scholar 

  • Friedt, J. M., Sanchez, J. P. & Shenoy, G. K. Electronic and magnetic properties of metal diiodides MI2 (M=V, Cr, Mn, Fe, Co, Ni, and Cd) from 129I Mössbauer spectroscopy. J. Chem. Phys. 65, 5093–5102 (1976).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Amoroso, D., Barone, P. & Picozzi, S. Spontaneous skyrmionic lattice from anisotropic symmetric exchange in a Ni-halide monolayer. Nat. Commun. 11, 5784 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Botana, A. S. & Norman, M. R. Electronic structure and magnetism of transition metal dihalides: bulk to monolayer. Phys. Rev. Mater. 3, 44001 (2019).

    Article 
    CAS 

    Google Scholar 

  • Fumega, A. O. & Lado, J. Microscopic origin of multiferroic order in monolayer NiI2. 2D Mater. 9, 025010 (2022).

    Article 
    CAS 

    Google Scholar 

  • Kuindersma, S., Sanchez, J. & Haas, C. Magnetic and structural investigations on NiI2 and CoI2. Physica B+C 111, 231–248 (1981).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Tseng, Y., Occhialini, C. A. et al. Shear‐mediated stabilization of spin spiral order in multiferroic NiI2. Adv. Mater. 37, 2417434 (2025).

  • Arima, T.-h. Ferroelectricity induced by proper-screw type magnetic order. J. Phys. Soc. Jpn. 76, 073702 (2007).

    Article 
    ADS 

    Google Scholar 

  • Xiang, H. J., Kan, E. J., Zhang, Y., Whangbo, M.-H. & Gong, X. G. General theory for the ferroelectric polarization induced by spin-spiral order. Phys. Rev. Lett. 107, 157202 (2011).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Gao, F. Y. et al. Giant chiral magnetoelectric oscillations in a van der Waals multiferroic. Nature 632, 273–279 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Braunecker, B., Japaridze, G. I., Klinovaja, J. & Loss, D. Spin-selective Peierls transition in interacting one-dimensional conductors with spin-orbit interaction. Phys. Rev. B 82, 045127 (2010).

    Article 
    ADS 

    Google Scholar 

  • Choy, T.-P., Edge, J. M., Akhmerov, A. R. & Beenakker, C. W. J. Majorana fermions emerging from magnetic nanoparticles on a superconductor without spin-orbit coupling. Phys. Rev. B 84, 195442 (2011).

    Article 
    ADS 

    Google Scholar 

  • Martin, I. & Morpurgo, A. F. Majorana fermions in superconducting helical magnets. Phys. Rev. B 85, 144505 (2012).

    Article 
    ADS 

    Google Scholar 

  • Egger, R. & Flensberg, K. Emerging Dirac and Majorana fermions for carbon nanotubes with proximity-induced pairing and spiral magnetic field. Phys. Rev. B 85, 235462 (2012).

    Article 
    ADS 

    Google Scholar 

  • Nadj-Perge, S., Drozdov, I. K., Bernevig, B. A. & Yazdani, A. Proposal for realizing Majorana fermions in chains of magnetic atoms on a superconductor. Phys. Rev. B 88, 020407 (2013).

    Article 
    ADS 

    Google Scholar 

  • Cheong, S.-W. & Huang, F.-T. Kinetomagnetism of chirality and its applications. Appl. Phys. Lett. 125, 060501 (2024).

    Article 
    CAS 

    Google Scholar 

  • Masuda, H. et al. Room temperature chirality switching and detection in a helimagnetic MnAu2 thin film. Nat. Commun. 15, 1999 (2024).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chen, G., Khosravian, M., Lado, J. L. & Ramires, A. Designing spin-textured flat bands in twisted graphene multilayers via helimagnet encapsulation. 2D Mater. 9, 024002 (2022).

    Article 
    CAS 

    Google Scholar 

  • Sandratskii, L. Noncollinear magnetism in itinerant-electron systems: theory and applications. Adv. Phys. 47, 91–160 (1998).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Mayo, A. H. et al. Band asymmetry–driven nonreciprocal electronic transport in a helimagnetic semimetal α-EuP3. Proc. Natl Acad. Sci. 122, e2405839122 (2025).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Grinberg, I. et al. Perovskite oxides for visible-light-absorbing ferroelectric and photovoltaic materials. Nature 503, 509–512 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Matsubara, M. et al. Magnetoelectric domain control in multiferroic TbMnO3. Science 348, 1112–1115 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Zhang, L. et al. Room-temperature electrically switchable spin–valley coupling in a van der Waals ferroelectric halide perovskite with persistent spin helix. Nat. Photon. 16, 529–537 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Niu, C. et al. Tunable circular photogalvanic and photovoltaic effect in 2D tellurium with different chirality. Nano Lett. 23, 3599–3606 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Wang, S. et al. Circular photogalvanic effect in oxide two-dimensional electron gases. Phys. Rev. Lett. 128, 187401 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • McIver, J., Hsieh, D., Steinberg, H., Jarillo-Herrero, P. & Gedik, N. Control over topological insulator photocurrents with light polarization. Nat. Nanotechnol. 7, 96–100 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Kim, J. H. et al. Terahertz evidence of electromagnon excitations in the multiferroic van der Waals insulator NiI2. Phys. Rev. B 108, 064414 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Martin, L. W. & Rappe, A. M. Thin-film ferroelectric materials and their applications. Nat. Rev. Mater. 2, 16087 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Liu, H. et al. Vapor deposition of magnetic van der Waals NiI2 crystals. ACS Nano 14, 10544–10551 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994).

    Article 
    ADS 

    Google Scholar 

  • Herath, U. et al. PyProcar: a Python library for electronic structure pre/post-processing. Comput. Phys. Commun. 251, 107080 (2020).

    Article 
    MathSciNet 
    CAS 

    Google Scholar 

  • Larsen, A. H. et al. The atomic simulation environment—a Python library for working with atoms. J. Phys. Condens. Matter 29, 273002 (2017).

    Article 

    Google Scholar 

  • Kokalj, A. XCrySDen—a new program for displaying crystalline structures and electron densities. J. Mol. Graph. Model. 17, 176–179 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Song, Q. Electrical switching of an unconventional odd-parity magnet. Harvard Dataverse https://doi.org/doi:10.7910/DVN/MSCHDT (2025).

  • Source link

    spot_imgspot_img

    Subscribe

    Related articles

    Song Exploder – Anohni

    “4 Degrees” Anohni is a singer and songwriter originally from...

    Why Your Focus Groups Are Failing and What to Do Instead

    The Duct Tape Marketing Podcast with Jacqueline Lieberman In this...

    The 10,000-mile march through fire that made dinosaurs possible

    The forerunners of dinosaurs and crocodiles in the Triassic...

    ‘A long night of attacks, with fears of more to come’

    There has been a night of intense fighting between...
    spot_imgspot_img